Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202318185, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299925

RESUMO

The incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings. Their structure and electronic properties were investigated via scanning tunneling microscopy and spectroscopy, complemented by computational investigations. After thermal activation of the precursor P on the Au(111) surface, we detected two major nanographene products. Nanographene Aa-a embeds two azulene units formed through oxidative ring-closure of methyl substituents, while Aa-s contains one azulene unit and one Stone-Wales defect, formed by the combination of oxidative ring-closure and skeletal ring-rearrangement reactions. Aa-a exhibits an antiferromagnetic ground state with the highest magnetic exchange coupling reported up to date for a non-benzenoid containing nanographene, coexisting with side-products with closed shell configurations resulted from the combination of ring-closure and ring-rearragement reactions (Ba-a , Ba-s , Bs-a and Bs-s ). Our results provide insights into the single gold atom assisted synthesis of novel NGs containing non-benzenoid motifs and their tailored electronic/magnetic properties.

2.
J Am Chem Soc ; 146(5): 3531-3538, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38269436

RESUMO

The design of supramolecular organic radical cages and frameworks is one of the main challenges in supramolecular chemistry. Their interesting material properties and wide applications make them very promising for (photo)redox catalysis, sensors, or host-guest spin-spin interactions. However, the high reactivity of radical organic systems makes the design of such supramolecular radical assemblies challenging. Here, we report the on-surface synthesis of a purely organic supramolecular radical framework on Au(111), by combining supramolecular and on-surface chemistry. We employ a tripodal precursor, functionalized with 7-azaindole groups that, catalyzed by a single gold atom on the surface, forms a radical molecular product constituted by a π-extended fluoradene-based radical core. The radical products self-assemble through hydrogen bonding, leading to extended 2D domains ordered in a Kagome-honeycomb lattice. This approach demonstrates the potential of on-surface synthesis for developing 2D supramolecular radical organic chemistry.

3.
J Phys Condens Matter ; 35(33)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37168002

RESUMO

Two-dimensional (2D) layered group IV-VI semiconductors attract great interest due to their potential applications in nanoelectronics. Depending on the dimensionality, different phases of the same material can present completely different electronic and optical properties, expanding its applications. Here, we present a combined experimental and theoretical study of the atomic structure and electronic properties of epitaxial SnSe structures grown on a metallic Au(111) substrate, forming almost defect-free 2D layers. We describe a coverage-dependent transition from a metallicß-SnSe to a semiconductingα-SnSe phase. The combination of scanning tunneling microscopy/spectroscopy, non-contact atomic force microscopy, x-ray photoelectron spectroscopy/diffraction and angle-resolved photoemission spectroscopy, complemented by density functional theory, provides a comprehensive study of the geometric and electronic structure of both phases. Our work demonstrates the possibility to grow two distinct SnSe phases on Au(111) with high quality and on a large scale. The strong interaction with the substrate allows the stabilization of the previously experimentally unreportedß-SnSe, while the ultra-thin films of orthorhombicα-SnSe are structurally and electronically equivalent to bulk SnSe.

4.
J Am Chem Soc ; 145(5): 2968-2974, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36708335

RESUMO

The design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (A, B, and C) featuring majority zigzag peripheries. Through many-body calculations, we identify a transition from a closed-shell ground state to an open-shell ground state upon an increase of the molecular size. Our predictions indicate that the largest MEC for open-shell NGs occurs in proximity to the transition between closed-shell and open-shell states. Such predictions are corroborated by the on-surface syntheses and structural, electronic, and magnetic characterizations of three NGs (A[3,5], B[4,5], and C[4,3]), which are the smallest open-shell systems in their respective chemical families and are thus located the closest to the transition boundary. Notably, two of the NGs (B[4,5] and C[4,3]) feature record values of MEC (close to 200 meV) measured on the Au(111) surface. Our strategy for maximizing the MEC provides perspectives for designing carbon nanomaterials with robust magnetic ground states.

5.
Angew Chem Int Ed Engl ; 62(6): e202212395, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445791

RESUMO

Nanocars are carbon-based single-molecules with a precise design that facilitates their atomic-scale control on a surface. The rational design of these molecules is important in atomic and molecular-scale manipulation to advance the development of molecular machines, as well as for a better understanding of self-assembly, diffusion and desorption processes. Here, we introduce the molecular design and construction of a collection of minimalistic nanocars. They feature an anthracene chassis and four benzene derivatives as wheels. After sublimation and adsorption on an Au(111) surface, we show controlled and fast manipulation of the nanocars along the surface using the tip of a scanning tunneling microscope (STM). The mechanism behind the successful displacement is the induced dipole created over the nanocar by the STM tip. We utilized carbon monoxide functionalized tips both to avoid decomposition and accidentally picking the nanocars up during the manipulation. This strategy allowed thousands of maneuvers to successfully win the Nanocar Race II championship.

6.
J Am Chem Soc ; 144(28): 12725-12731, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35817408

RESUMO

The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111). Scanning tunneling microscopy and noncontact atomic force microscopy describe the thermal-activated intra- and intermolecular oxidative ring closure reactions as well as the controlled tip-induced hydrogen dissociation from the porphyrinoid units. In addition, scanning tunneling spectroscopy measurements, complemented by computational investigations, reveal the open-shell character, that is, the antiferromagnetic singlet ground state (S = 0) of the formed polymers, characterized by singlet-triplet inelastic excitations observed between spins of adjacent porphyrinoid units. Our approach sheds light on the crucial relevance of the π-conjugation in the correlations between spins, while expanding the on-surface synthesis toolbox and opening avenues toward the synthesis of innovative functional nanomaterials with prospects in carbon-based spintronics.

7.
Chemistry ; 28(48): e202200944, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35686485

RESUMO

Atomic scale defects significantly affect the mechanical, electronic, and optical properties of π-conjugated polymers. Here, isolated atomic-scale defects are deliberately introduced into a prototypical anthracene-ethynylene π-conjugated polymer, and its local density of states is carefully examined on the atomic scale to show how individual defects modify the inherent electronic and magnetic properties of this one-dimensional systems. Scanning tunneling and atomic force microscopy experiments, supplemented with density functional theory calculations, reveal the existence of a sharp electronic resonance at the Fermi energy around certain defects, which is associated with the formation of a local magnetic moment accompanied by substantial mitigation of the mobility of charge carriers. While defects in traditionally synthesized polymers lead to arbitrary conformations, the presented results clearly reflect the preferential formation of low dimensional defects at specific polymer sites, which may introduce the possibility of engineering macroscopic defects in surface-synthesized conjugated polymers.

8.
Adv Sci (Weinh) ; 9(19): e2200407, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35604199

RESUMO

On-surface synthesis has recently emerged as a powerful strategy to design conjugated polymers previously precluded in conventional solution chemistry. Here, an N-containing pentacene-based precursor (tetraazapentacene) is ex-professo synthesized endowed with terminal dibromomethylene (:CBr2 ) groups to steer homocoupling via dehalogenation on metallic supports. Combined scanning probe microscopy investigations complemented by theoretical calculations reveal how the substrate selection drives different reaction mechanisms. On Ag(111) the dissociation of bromine atoms at room temperature triggers the homocoupling of tetraazapentacene units together with the binding of silver adatoms to the nitrogen atoms of the monomers giving rise to a N-containing conjugated coordination polymer (P1). Subsequently, P1 undergoes ladderization at 200 °C, affording a pyrrolopyrrole-bridged conjugated polymer (P2). On Au(111) the formation of the intermediate polymer P1 is not observed and, instead, after annealing at 100 °C, the conjugated ladder polymer P2 is obtained, revealing the crucial role of metal adatoms on Ag(111) as compared to Au(111). Finally, on Ag(100) the loss of :CBr2 groups affords the formation of tetraazapentacene monomers, which coexist with polymer P1. Our results contribute to introduce protocols for the synthesis of N-containing conjugated polymers, illustrating the selective role of the metallic support in the underlying reaction mechanisms.

9.
Angew Chem Int Ed Engl ; 61(23): e202114983, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170842

RESUMO

The synthesis of long n-peri-acenes (n-PAs) is challenging as a result of their inherent open-shell radical character, which arises from the presence of parallel zigzag edges beyond a certain n value. They are considered as π-electron model systems to study magnetism in graphene nanostructures; being potential candidates in the fabrication of optoelectronic and spintronic devices. Here, we report the on-surface formation of the largest pristine member of the n-PA family, i.e. peri-heptacene (n=7, 7-PA), obtained on an Au(111) substrate under ultra-high vacuum conditions. Our high-resolution scanning tunneling microscopy investigations, complemented by theoretical simulations, provide insight into the chemical structure of this previously elusive compound. In addition, scanning tunneling spectroscopy reveals the antiferromagnetic open-shell singlet ground state of 7-PA, exhibiting singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 49 meV.

10.
Small ; 18(12): e2106407, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064636

RESUMO

First-row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α-region), while the less abundant is 1Co:1Au coincidental (ß-region). As a result of the surface registry, in the ß-region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip-induced voltage pulses irreversibly transform α- into ß-regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.


Assuntos
Cobalto , Nanopartículas , Catálise , Cobalto/química , Nanopartículas/química , Óxidos/química
11.
Nanomaterials (Basel) ; 12(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35055243

RESUMO

The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (A1, A2 and A3) on the Au(111) surface. A1 and A2 contain two five- and one seven-membered rings within their benzenoid backbone, while A3 incorporates one five-membered ring. Their structures and electronic properties have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy complemented with theoretical calculations. Our results provide access to open-shell NGs with a combination of non-benzenoid topologies previously precluded by conventional synthetic procedures.

12.
Angew Chem Int Ed Engl ; 60(48): 25551-25556, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34546628

RESUMO

The atomically precise control over the size, shape and structure of nanographenes (NGs) or the introduction of heteroatom dopants into their sp2 -carbon lattice confer them valuable electronic, optical and magnetic properties. Herein, we report on the design and synthesis of a hexabenzocoronene derivative embedded with graphitic nitrogen in its honeycomb lattice, achieved via on-surface assisted cyclodehydrogenation on the Au(111) surface. Combined scanning tunnelling microscopy/spectroscopy and non-contact atomic force microscopy investigations unveil the chemical and electronic structures of the obtained dicationic NG. Kelvin probe force microscopy measurements reveal a considerable variation of the local contact potential difference toward lower values with respect to the gold surface, indicative of its positive net charge. Altogether, we introduce the concept of cationic nitrogen doping of NGs on surfaces, opening new avenues for the design of novel carbon nanostructures.

13.
J Phys Chem Lett ; 12(1): 330-336, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33352044

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a family of organic compounds comprising two or more fused aromatic rings which feature manifold applications in modern technology. Among these species, those presenting an open-shell magnetic ground state are of particular interest for organic electronic, spintronic, and non-linear optics and energy storage devices. Within PAHs, special attention has been devoted in recent years to the synthesis and study of the acene and fused acene (periacene) families, steered by their decreasing HOMO-LUMO gap with length and predicted open-shell character above some size. However, an experimental fingerprint of such magnetic ground state has remained elusive. Here, we report on the in-depth electronic characterization of isolated peripentacene molecules on a Au(111) surface. Scanning tunnelling spectroscopy, complemented by computational investigations, reveals an antiferromagnetic singlet ground state, characterized by singlet-triplet inelastic excitations with an experimental effective exchange coupling (Jeff) of 40.5 meV. Our results deepen the fundamental understanding of organic compounds with magnetic ground states, featuring perspectives in carbon-based spintronic devices.

14.
Chem Commun (Camb) ; 56(97): 15309-15312, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33200161

RESUMO

On-surface synthesis has recently become an essential approach toward the formation of carbon-based nanostructures. Special emphasis is set on the synthesis of π-conjugated polymers taking into consideration their relevance and potential in organic electronics, optoelectronics and spintronics. Here, we report the on-surface synthesis of conjugated ladder polymers consisting of pentacene units doubly-linked via ethynylene-like bonds on the Au(111) surface under ultra-high vacuum conditions. To this aim, we have sublimed pentacene-like precursors equipped with four :CBr2 functional groups to steer the desired reaction upon annealing on the surface. The atomically precise structure of the obtained polymers has been unambiguously characterized via low-temperature scanning tunneling microscopy and non-contact atomic force microscopy. In addition, scanning tunneling spectroscopy complemented with density-functional theory calculations reveal the narrow bandgap of the polymer. Our results provide potential for the synthesis of π-conjugated polymers with prospects in functional carbon-based nanomaterials that exploit multiple connections between molecular backbones.

15.
Nat Commun ; 11(1): 4567, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917869

RESUMO

The development of synthetic strategies to engineer π-conjugated polymers is of paramount importance in modern chemistry and materials science. Here we introduce a synthetic protocol based on the search for specific vibrational modes through an appropriate tailoring of the π-conjugation of the precursors, in order to increase the attempt frequency of a chemical reaction. First, we design a 1D π-conjugated polymer on Au(111), which is based on bisanthene monomers linked by cumulene bridges that tune specific vibrational modes. In a second step, upon further annealing, such vibrational modes steer the twofold cyclization reaction between adjacent bisanthene moieties, which gives rise to a long pentalene-bridged conjugated ladder polymer featuring a low bandgap. In addition, high resolution atomic force microscopy allows us to identify by atomistic insights the resonance form of the polymer, thus confirming the validity of the Glidewell and Lloyd´s rules for aromaticity. This on-surface synthetic strategy may stimulate exploiting previously precluded reactions towards π-conjugated polymers with specific structures and properties.

16.
Angew Chem Int Ed Engl ; 59(40): 17594-17599, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32592432

RESUMO

We report on the synthesis and characterization of atomically precise one-dimensional diradical peripentacene polymers on a Au(111) surface. By means of high-resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon-based optoelectronics and spintronics.

17.
Nat Nanotechnol ; 15(6): 437-443, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32313219

RESUMO

Topological band theory predicts that a topological electronic phase transition between two insulators must proceed via closure of the electronic gap. Here, we use this transition to circumvent the instability of metallic phases in π-conjugated one-dimensional (1D) polymers. By means of density functional theory, tight-binding and GW calculations, we predict polymers near the topological transition from a trivial to a non-trivial quantum phase. We then use on-surface synthesis with custom-designed precursors to make polymers consisting of 1D linearly bridged acene moieties, which feature narrow bandgaps and in-gap zero-energy edge states when in the topologically non-trivial phase close to the topological transition point. We also reveal the fundamental connection between topological classes and resonant forms of 1D π-conjugated polymers.

18.
Angew Chem Int Ed Engl ; 58(20): 6559-6563, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30761719

RESUMO

Engineering low-band-gap π-conjugated polymers is a growing area in basic and applied research. The main synthetic challenge lies in the solubility of the starting materials, which precludes advancements in the field. Here, we report an on-surface synthesis protocol to overcome such difficulties and produce poly(p-anthracene ethynylene) molecular wires on Au(111). To this aim, a quinoid anthracene precursor with =CBr2 moieties is deposited and annealed to 400 K, resulting in anthracene-based polymers. High-resolution nc-AFM measurements confirm the nature of the ethynylene-bridge bond between the anthracene moieties. Theoretical simulations illustrate the mechanism of the chemical reaction, highlighting three major steps: dehalogenation, diffusion of surface-stabilized carbenes, and homocoupling, which enables the formation of an ethynylene bridge. Our results introduce a novel chemical protocol to design π-conjugated polymers based on oligoacene precursors and pave new avenues for advancing the emerging field of on-surface synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...